Curve-Graph Odometry: Removing the Orientation in Loop Closure Optimisation Problems
نویسندگان
چکیده
In robot odometry and SLAM applications the real trajectory is estimated incrementally. This produces an accumulation of errors which gives raise to a drift in the trajectory. When revisiting a previous position this drift becomes observable and thus it can be corrected by applying loop closing techniques. Ultimately a loop closing process leads to an optimisation problem where new constraints between poses obtained from loop detection are applied to the initial incremental estimate of the trajectory. Typically this optimisation is jointly applied on the position and orientation of each pose of the robot using the state-of-the-art pose graph optimisation scheme on the manifold of the rigid body motions. In this paper we propose to address the loop closure problem using only the positions and thus removing the orientations from the optimisation vector. The novelty in our approach is that, instead of treating trajectory as a set of poses, we look at it as a curve in its pure mathematical meaning. We define an observation function which computes the estimate of one constraint in a local reference frame using only the robot positions. Our proposed method is compared against state-of-the-art pose graph optimisation algorithms in 2 and 3 dimensions. The main advantages of our method are the elimination of the need of mixing the orientation and position in the optimisation and the savings in computational cost due to the reduction of the dimension of the optimisation vector.
منابع مشابه
Curve-graph odometry: Orientation-free error parameterisations for loop closure problems
During incremental odometry estimation in robotics and vision applications, the accumulation of estimation error produces a drift in the trajectory. This drift becomes observable when returning to previously visited areas, where it is possible to correct it by applying loop closing techniques. Ultimately a loop closing process leads to an optimisation problem where new constraints between poses...
متن کاملRobust Onboard Visual SLAM for Autonomous MAVs
This paper presents a visual simultaneous localization and mapping (SLAM) system consisting of a robust visual odometry and an efficient back-end with loop closure detection and pose-graph optimization. Robustness of the visual odometry is achieved by utilizing dual cameras pointing different directions with no overlap in their respective fields of view mounted on an micro aerial vehicle (MAV)....
متن کاملExploiting Attitude Sensing in Vision-Based Navigation for an Airship
An Attitude Heading Reference System (AHRS) is used to compensate for rotational motion, facilitating vision-based navigation above smooth terrain by generating virtual images to simulate pure translation movement. The AHRS combines inertial and earth field magnetic sensors to provide absolute orientation measurements, and our recently developed calibration routine determines the rotation betwe...
متن کاملMapping and determining the center of mass of a rotating object using a moving observer
For certain applications, such as on-orbit inspection of orbital debris, defunct satellites, and natural objects, it is necessary to obtain a map of a rotating object from a moving observer, as well estimate the object’s center of mass. This paper addresses these tasks using an observer that measures its orientation, angular rate, acceleration, and is equipped with a dense 3D visual sensor such...
متن کاملCombining Odometry and Visual Loop-Closure Detection for Consistent Topo-Metrical Mapping
We address the problem of simultaneous localization and mapping (SLAM) by combining visual loop-closure detection with metrical information given by a robot odometry. The proposed algorithm extends a purely appearance-based loopclosure detection method based on bags of visual words [1] which is able to detect when the robot has returned back to a previously visited place. An efficient optimizat...
متن کامل